The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy.
نویسندگان
چکیده
CONTEXT Mutations in the Kir6.2 subunit (KCNJ11) of the ATP-sensitive potassium channel (KATP) underlie neonatal diabetes mellitus. In severe cases, Kir6.2 mutations underlie developmental delay, epilepsy, and neonatal diabetes (DEND). All Kir6.2 mutations examined decrease the ATP inhibition of KATP, which is predicted to suppress electrical activity in neurons (peripheral and central), muscle, and pancreas. Inhibitory sulfonylureas (SUs) have been used successfully to treat diabetes in patients with activating Kir6.2 mutations. There are two reports of improved neurological features in SU-treated DEND patients but no report of such improvement in adulthood. OBJECTIVE The objective of the study was to determine the molecular basis of intermediate DEND in a 27-yr-old patient with a KCNJ11 mutation (G53D) and the patient's response to SU therapy. DESIGN The G53D patient was transferred from insulin to gliclazide and then to glibenclamide over a 160-d period. Motor function was assessed throughout. Electrophysiology assessed the effect of the G53D mutation on KATP activity. RESULTS The G53D patient demonstrated improved glycemic control and motor coordination with SU treatment, although glibenclamide was more effective than gliclazide. Reconstituted G53D channels exhibit reduced ATP sensitivity, which is predicted to suppress electrical activity in vivo. G53D channels coexpressed with SUR1 (the pancreatic and neuronal isoform) exhibit high-affinity block by gliclazide but are insensitive to block when coexpressed with SUR2A (the skeletal muscle isoform). High-affinity block by glibenclamide is present in G53D channels coexpressed with either SUR1 or SUR2A. CONCLUSION The results demonstrate that SUs can resolve motor dysfunction in an adult with intermediate DEND and that this improvement is due to inhibition of the neuronal but not skeletal muscle KATP.
منابع مشابه
Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation
Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium (KATP) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonyl...
متن کاملSulfonylurea Therapy in Two Korean Patients with Insulin-treated Neonatal Diabetes due to Heterozygous Mutations of the KCNJ11 Gene Encoding Kir6.2
Permanent neonatal diabetes (PND) is a rare form of diabetes characterized by insulin-requiring hyperglycemia diagnosed within the first three months of life. In most cases, the causes are not known. Recently, mutations in the KCNJ11 gene encoding the Kir6.2 subunit of the ATP-sensitive K+ channel have been described in patients with PND. We report the first two Korean cases with PND due to a l...
متن کاملFunctional effects of mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), causing neonatal diabetes, and response to sulfonylurea therapy.
Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K(+) channel (K(ATP) channel), cause neonatal diabetes. To date, all mutations increase whole-cell K(ATP) channel currents by reducing channel inhibition by MgATP. Here, we provide functional characterization of two mutations (F35L and F35V) at residue F35 of Kir6.2, which lies within the NH(...
متن کاملPermanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy.
Permanent neonatal diabetes (PND) can be caused by mutations in the transcription factors insulin promoter factor (IPF)-1, eukaryotic translation initiation factor-2alpha kinase 3 (EIF2AK3), and forkhead box-P3 and in key components of insulin secretion: glucokinase (GCK) and the ATP-sensitive K(+) channel subunit Kir6.2. We sequenced the gene encoding Kir6.2 (KCNJ11) in 11 probands with GCK-ne...
متن کاملMutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects.
Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K(+) channel (K(ATP) channel), are a common cause of neonatal diabetes. We identified a novel KCNJ11 mutation, R50Q, that causes permanent neonatal diabetes (PNDM) without neurological problems. We investigated the functional effects this mutation and another at the same residue (R50P) that l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical endocrinology and metabolism
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2008